skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wienand, Julian_F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A fundamental principle of chaotic quantum dynamics is that local subsystems eventually approach a thermal equilibrium state. The corresponding timescales increase with subsystem size as equilibration is limited by the hydrodynamic build-up of fluctuations on extended length scales. We perform large-scale quantum simulations that monitor particle-number fluctuations in tunable ladders of hard-core bosons and explore how the build-up of fluctuations changes as the system crosses over from integrable to fully chaotic dynamics. Our results indicate that the growth of large-scale fluctuations in chaotic, far-from-equilibrium systems is quantitatively determined by equilibrium transport coefficients, in agreement with the predictions of fluctuating hydrodynamics. This emergent hydrodynamic behaviour of subsystem fluctuations provides a test of fluctuation–dissipation relations far from equilibrium and allows the accurate determination of equilibrium transport coefficients using far-from-equilibrium quantum dynamics. 
    more » « less